Issue 9, 2011

A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation

Abstract

We designed, fabricated and tested a novel three-dimensional flexible microprobe to record neural signals of a lateral giant nerve fiber of the escape circuit of an American crayfish. An electrostatic actuation folded planar probes into three-dimensional neural probes with arbitrary orientations for neuroscientific applications. A batch assembly based on electrostatic forces simplified the fabrication and was non-toxic. A novel fabrication for these three-dimensional flexible probes used SU-8 and Parylene technology. The mechanical strength of the neural probe was great enough to penetrate into a bio-gel. A flexible probe both decreased the micromotion and alleviated tissue encapsulation of the implant caused by chronic inflammation of tissue when an animal breathes or moves. The cortex consisted of six horizontal layers, and the neurons of the cortex were arranged in vertical structures; the three-dimensional microelectrode arrays were suitable to investigate the cooperative activity for neurons in horizontal separate layers and in vertical cortical columns. With this flexible probe we recorded neural signals of a lateral giant cell from an American crayfish. The response amplitude of action potentials was about 343 µV during 1 ms period; the average recorded data had a ratio of signal to noise as great as 30.22 ± 3.58 dB. The improved performance of this electrode made feasible the separation of neural signals according to their distinct shapes. The cytotoxicity indicated a satisfactory biocompatibility and non-toxicity of the flexible device fabricated in this work.

Graphical abstract: A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation

Article information

Article type
Paper
Submitted
22 Dec 2010
Accepted
08 Mar 2011
First published
29 Mar 2011

Lab Chip, 2011,11, 1647-1655

A three-dimensional flexible microprobe array for neural recording assembled through electrostatic actuation

C. Chen, S. Chuang, H. Su, W. Hsu, T. Yew, Y. Chang, S. Yeh and D. Yao, Lab Chip, 2011, 11, 1647 DOI: 10.1039/C0LC00718H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements