Issue 1, 2011

Dramatic increase of quench efficiency in “spacerless” dimaleimide fluorogens

Abstract

In this post-genomic era, new techniques are needed to cope with the task of assigning functional roles to the huge number of identified putative gene products. We have developed a minimalist labelling strategy based on the use of synthetic fluorogenic probe reagents that fluoresce only after their reaction with a target peptide sequence. The probe reagents have fluorescent cores and bear two maleimide groups, such that their latent fluorescence is quenched by a photoinduced electron transfer (PET) to the pendant maleimide groups, until both of these groups undergo a specific thiol addition reaction. The efficiency of the fluorescence quenching is critical to the practicality of this labelling method, and has been predicted to be related to the intramolecular distance between the fluorophore and the maleimide groups. We have conducted the first direct test of this hypothesis by preparing a series of novel fluorogens that differ only by the spacer moiety separating their coumarin fluorophore and their dimaleimide fragment. A striking correlation was observed between intramolecular distance and the fluorescence enhancement (FE) observed after reaction with two equivalents of thiol. Guided by this observation, we then designed ‘spacerless’ fluorogens, of which a dansyl derivative shows an FE ratio of >300, the largest recorded for dimaleimide fluorogens. The trends observed herein provide valuable lessons for subsequent fluorogen design, and the novel fluorogens developed in the course of this study are currently being applied to protein labelling applications.

Graphical abstract: Dramatic increase of quench efficiency in “spacerless” dimaleimide fluorogens

Supplementary files

Article information

Article type
Paper
Submitted
19 Jul 2010
Accepted
04 Oct 2010
First published
10 Nov 2010

Org. Biomol. Chem., 2011,9, 185-197

Dramatic increase of quench efficiency in “spacerless” dimaleimide fluorogens

K. Caron, V. Lachapelle and J. W. Keillor, Org. Biomol. Chem., 2011, 9, 185 DOI: 10.1039/C0OB00455C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements