Issue 6, 2011

Dendri-RAFTs: a second generation of cyclopeptide-based glycoclusters

Abstract

Synthetic glycoclusters and their related biological applications have stimulated increasing interest over the last decade. As a prerequisite to discovering active and selective therapeuticals, the development of multivalent glycoconjugates with diverse topologies is faced with inherent synthetic and structural characterisation difficulties. Here we describe a new series of molecularly-defined glycoclusters that were synthesized in a controlled manner using a robust and versatile divergent protocol. Starting from a Regioselectively Addressable Functionalized Template (RAFT) carrier, either a polylysine dendritic framework or a second RAFT, then 16 copies of βGal, αMan, βLac or cancer-related Thomsen-Freidenreich (αTF) antigen were successively conjugated within the same molecule using oxime chemistry. We thus obtained a new generation of dendri-RAFTs glycoclusters with high glycosidic density and variable spatial organizations. These compounds displaying 16 endgroups were unambiguously characterized by NMR spectroscopy and mass spectrometry. Further biological assays between a model lectin from Canavalia ensiformis (ConA) and mannosylated glycoclusters revealed a higher inhibition potency than the tetravalent counterpart, in particular for the hexadecavalent polylysine skeleton. Together with the efficiency of the synthetic and characterisation processes, this preliminary biological study provided clear evidence of promising properties that make the second generation of cyclopeptide-based glycoclusters attractive for biomedical applications.

Graphical abstract: Dendri-RAFTs: a second generation of cyclopeptide-based glycoclusters

Supplementary files

Article information

Article type
Paper
Submitted
23 Sep 2010
Accepted
15 Nov 2010
First published
16 Nov 2010

Org. Biomol. Chem., 2011,9, 1948-1959

Dendri-RAFTs: a second generation of cyclopeptide-based glycoclusters

I. Bossu, M. Šulc, K. Křenek, E. Dufour, J. Garcia, N. Berthet, P. Dumy, V. Křen and O. Renaudet, Org. Biomol. Chem., 2011, 9, 1948 DOI: 10.1039/C0OB00772B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements