Issue 3, 2011

Functional biorenewable polyesters from carvone-derived lactones

Abstract

To expand the palette of renewable resource derived monomers that incorporate reactive functionality, the natural product carvone was transformed into two polymerizable lactones, carvomenthide, containing only pendent alkyl groups, and dihydrocarvide, containing an unsaturated moiety. These lactones were polymerized using the catalyst/initiating system diethyl zinc/benzyl alcohol to give aliphatic polyesters with low glass transition temperatures. Good control of the polymer molar masses up to approximately 50 kg mol−1 and products with polydispersity indices below 1.3 were achieved in all cases. Copolymerization of the two lactones was successfully carried out at feed compositions ranging from 3–80 mol% dihydrocarvide, and the ultimate level of dihydrocarvide incorporated into the copolymers was proportional to the feed composition. The pendant double bonds in poly(dihydrocarvide) and copolymers that contain dihydrocarvide were modified by post-polymerization reactions, including epoxidation and radical-induced crosslinking.

Graphical abstract: Functional biorenewable polyesters from carvone-derived lactones

Article information

Article type
Paper
Submitted
02 Sep 2010
Accepted
28 Oct 2010
First published
10 Dec 2010

Polym. Chem., 2011,2, 702-708

Functional biorenewable polyesters from carvone-derived lactones

J. R. Lowe, M. T. Martello, W. B. Tolman and M. A. Hillmyer, Polym. Chem., 2011, 2, 702 DOI: 10.1039/C0PY00283F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements