Issue 17, 2010

The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting

Abstract

The power conversion efficiency in a conjugated polymer-functionalized fullerene bulk heterojunction organic photovoltaic (OPV) device is dependent both on the electronic properties of the constituent materials and on the nanoscale morphology of the active semiconductor layer thin-film. Here we use in situ ellipsometry and grazing incidence X-ray scattering (GI-XS) to study molecular self-organization in poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend films in real time, during the drying process as they are cast from solution. We illustrate the evolution of the extinction coefficient from a solution to a solid, semi-crystalline state. We show that once the solvent fraction in the film falls below 50%, the P3HT undergoes rapid crystallization via heterogeneous nucleation; a process that is complete in seconds. We also evidence a rapid, dynamic self-annealing process that reduces the characteristic lamella spacing in the P3HT crystallites. The mechanistic understanding of film-formation demonstrated here is an important component in optimizing deposition processes suitable for large-area OPV manufacture.

Graphical abstract: The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting

Supplementary files

Article information

Article type
Paper
Submitted
07 May 2010
Accepted
08 Jun 2010
First published
07 Jul 2010

Soft Matter, 2010,6, 4128-4134

The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting

T. Wang, A. D. F. Dunbar, P. A. Staniec, A. J. Pearson, P. E. Hopkinson, J. E. MacDonald, S. Lilliu, C. Pizzey, N. J. Terrill, A. M. Donald, A. J. Ryan, R. A. L. Jones and D. G. Lidzey, Soft Matter, 2010, 6, 4128 DOI: 10.1039/C0SM00343C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements