Issue 23, 2010

String-like collective atomic motion in the interfacial dynamics of nanoparticles

Abstract

The exploding field of nanotechnology is largely driven by the significant physical and chemical property changes of nanoparticles (NPs) and other nanostructures in comparison to bulk materials and by an increasing capacity for measuring these property changes and synthetically tuning these property changes by controlling particle and feature size, along with surface chemistry. Given the large size-dependent shifts of NP melting temperatures Tm, we can expect at least some of these NP property changes to be associated with an alteration in the NP atomic mobility as the particle size and surface chemistry are varied. Since recent electron microscopy studies on metal NPs of interest in heterogeneous catalysis (e.g., fuel cells, carbon nanotube growth) have often indicated a high NP interfacial mobility and have suggested the relevance of this phenomenon to catalysis, we performed molecular dynamics (MD) simulations for a range of NP sizes in the catalytically relevant temperature range with a focus on quantifying the NP interfacial dynamics. Our illustrative computations were performed for Ni NPs because these particles have been considered in fundamental studies of both fuel cell catalysis and carbon nanotubes growth. Instead of a simple fluid layer on the NP surface, we find a prevalence of string-like collective atomic motions where the geometrical nature of these collective excitations is found to be quantitatively like the collective atomic motions found in glass-forming liquids and in the grain boundary dynamics of polycrystalline materials. We illustrate our new perspective on NP interfacial dynamics by showing metal atom additives (Ag and Pt) alter the length of the string excitations (decreasing and increasing the average length, respectively), as in previous studies of molecular and NP additives in glass-forming polymer liquids.

Graphical abstract: String-like collective atomic motion in the interfacial dynamics of nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
11 May 2010
Accepted
09 Sep 2010
First published
04 Oct 2010

Soft Matter, 2010,6, 5944-5955

String-like collective atomic motion in the interfacial dynamics of nanoparticles

H. Zhang, P. Kalvapalle and J. F. Douglas, Soft Matter, 2010, 6, 5944 DOI: 10.1039/C0SM00356E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements