Issue 7, 2011

Mechanisms of soft cellular tissue bruising. A particle based simulation approach

Abstract

This paper is concerned with modeling the mechanical behavior of cellular tissue in response to dynamic stimuli. The objective is to investigate the formation of bruises and other damage in tissue under excessive loading. We propose a particle based model to numerically study cells and aggregates of cells described on to subcellular detail. The model focuses on a parenchyma cell type in which two important features are present: the cell's interior liquid-like phase inducing hydrodynamic phenomena; and the cell wall, a viscoelastic-plastic solid membrane that encloses the protoplast. The cell fluid is modeled by a Smoothed Particle Hydrodynamics (SPH) technique, while for the cell wall and cell adhesion a nonlinear discrete element model is proposed. Failure in the system is addressed to either cell wall rupture or to debonding of the middle lamella. We show that the model is able to reproduce experimental data of quasistatic compression, and investigate the role of the protoplasm viscosity and the cellular structure on the dynamics of the aggregate system. This indicates that a high viscosity causes better guidance of mechanical stresses through the tissue and can result in a higher penetration of damage, whereas low values will cause more local bruising effects.

Graphical abstract: Mechanisms of soft cellular tissue bruising. A particle based simulation approach

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2010
Accepted
24 Jan 2011
First published
21 Feb 2011

Soft Matter, 2011,7, 3580-3591

Mechanisms of soft cellular tissue bruising. A particle based simulation approach

P. Van Liedekerke, P. Ghysels, E. Tijskens, G. Samaey, D. Roose and H. Ramon, Soft Matter, 2011, 7, 3580 DOI: 10.1039/C0SM01261K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements