Issue 14, 2011

In situ synthesis of twin monodispersed alginate microparticles

Abstract

By applying the microfluidic emulsification and sorting processes, the formation of twin monodispersed droplets can be achieved in one step. The purpose of this study was to accurately separate the smaller of the twin droplets from the larger one to obtain two monodispersed microparticles. A bi-T-junction hybrid microchannel design was employed to control both emulsification and separation. The results show that the droplet sizes are comparable to the channel diameter and can be tuned by varying the shear rate of the oil phase relative to the aqueous phase. Due to the fact that the separation efficiency is close to 100% in this system, both of the collected larger and smaller droplets are highly monodispersed (RSD < 2% and 6%, respectively), and have high reproducibility. In addition, the proposed microfluidic device was employed to present a facile one-step synthetic approach for the preparation of twin monodispersed alginate microparticles entrapping quantum dots and Fe3O4 nanoparticles. The proposed microfluidic chip is capable of generating relatively uniform twin microparticles with sizes that can be well controlled. It is a simple, low cost, and high throughput process. In the future this apparatus could be applied to manufacture various twin monodispersed composite microvehicles to act as a smart drug delivery system.

Graphical abstract: In situ synthesis of twin monodispersed alginate microparticles

Supplementary files

Article information

Article type
Paper
Submitted
23 Nov 2010
Accepted
13 May 2011
First published
16 Jun 2011

Soft Matter, 2011,7, 6713-6718

In situ synthesis of twin monodispersed alginate microparticles

K. Huang, Y. Lin, C. Yang, C. Tsai and M. Hsu, Soft Matter, 2011, 7, 6713 DOI: 10.1039/C0SM01361G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements