Issue 19, 2011

Self-assembled bismuth telluride films with well-aligned zero- to three-dimensional nanoblocks for thermoelectric applications

Abstract

The dimension and size of the building blocks as well as the preferential orientation, geometry and regularity of their assemblies are the most important key factors for fabricating thermoelectric materials with a high figure-of-merit (ZT) which is governed by the efficiencies in transporting electrical and thermal energies along the measurement direction. A one-step and large-area growth approach has been successfully developed employing pulsed laser deposition (PLD) for producing physically self-assembled and well-aligned Bi2Te3 nanostructures on SiO2/Si substrates without pre-built templates or catalysts. The precisely parameter-controlled growth provides four highly reproducible and significant Bi2Te3 assemblies, comprising 0-dimensional (0-D) nanoparticles, 1-D nanorods, 2-D nanoflakes, and 3-D nanocanyons, respectively exhibiting an overall (006), (015), (110), and (006) preferential orientation normal to the substrate surface. The nanoparticle assisted crystal growth is proposed, mainly involving the condensation of the plasma species in the gas phase at higher ambient pressures and the following diffusion and reorganization of the deposited nanoparticle atoms on the substrates. The well-aligned 0-D to 3-D Bi2Te3 nanostructures show more excellent in-plane power factors than most of the randomly aligned Bi2Te3 nanostructures at room temperature mainly due to significantly reducing inter resistance. The thermoelectric properties of these well-aligned Bi2Te3 nanostructures are comparable to any other intrinsic Bi2Te3 nanostructures that have ever been reported. The present data are valuable for further improving and designing advanced thermoelectric materials and confirm that precise control of nanostructural aggregation is an effective strategy for enhancing the thermoelectric performance.

Graphical abstract: Self-assembled bismuth telluride films with well-aligned zero- to three-dimensional nanoblocks for thermoelectric applications

Supplementary files

Article information

Article type
Paper
Submitted
23 Mar 2011
Accepted
10 Jun 2011
First published
12 Aug 2011

CrystEngComm, 2011,13, 5956-5962

Self-assembled bismuth telluride films with well-aligned zero- to three-dimensional nanoblocks for thermoelectric applications

H. Chang and C. Chen, CrystEngComm, 2011, 13, 5956 DOI: 10.1039/C1CE05350G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements