Issue 46, 2011

Universal transition state scaling relations for (de)hydrogenation over transition metals

Abstract

We analyse the transition state energies for 249 hydrogenation/dehydrogenation reactions of atoms and simple molecules over close-packed and stepped surfaces and nanoparticles of transition metals using Density Functional Theory. Linear energy scaling relations are observed for the transition state structures leading to transition state scaling relations for all the investigated reactions. With a suitable choice of reference systems the transition state scaling relations form a universality class that can be approximated with one single linear relation describing the entire range of reactions over all types of surfaces and nanoclusters.

Graphical abstract: Universal transition state scaling relations for (de)hydrogenation over transition metals

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2011
Accepted
21 Sep 2011
First published
14 Oct 2011

Phys. Chem. Chem. Phys., 2011,13, 20760-20765

Universal transition state scaling relations for (de)hydrogenation over transition metals

S. Wang, V. Petzold, V. Tripkovic, J. Kleis, J. G. Howalt, E. Skúlason, E. M. Fernández, B. Hvolbæk, G. Jones, A. Toftelund, H. Falsig, M. Björketun, F. Studt, F. Abild-Pedersen, J. Rossmeisl, J. K. Nørskov and T. Bligaard, Phys. Chem. Chem. Phys., 2011, 13, 20760 DOI: 10.1039/C1CP20547A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements