Issue 28, 2011

Beyond the Förster formulation for resonance energy transfer: the role of dark states

Abstract

Resonance Energy Transfer (RET) is investigated in pairs of charge-transfer (CT) chromophores. CT chromophores are an interesting class of π conjugated chromophores decorated with one or more electron-donor and acceptor groups in polar (D–π–A), quadrupolar (D–π–A–π–D or A–π–D–π–A) or octupolar (D(–π–A)3 or A(–π–D)3) structures. Essential-state models accurately describe low-energy linear and nonlinear spectra of CT-chromophores and proved very useful to describe spectroscopic effects of electrostatic interchromophore interactions in multichromophoric assemblies. Here we apply the same approach to describe RET between CT-chromophores. The results are quantitatively validated by an extensive comparison with time-dependent density functional theory (TDDFT) calculations, confirming that essential-state models offer a simple and reliable approach for the calculation of electrostatic interchromophore interactions. This is an important result since it sets the basis for more refined treatments of RET: essential-state models are in fact easily extended to account for molecular vibrations in truly non-adiabatic approaches and to account for inhomogeneous broadening effects due to polar solvation. Optically forbidden (dark) states of quadrupolar and octupolar chromophores offer an interesting opportunity to verify the reliability of the dipolar approximation. In striking contrast with the dipolar approximation that strictly forbids RET towards or from dark states, our results demonstrate that dark states can take an active role in RET with interaction energies that, depending on the relative orientation of the chromophores, can be even larger than those relevant to allowed states. Essential-state models, whose predictions are quantitatively confirmed by TDDFT results, allow us to relate RET interaction energies towards allowed and dark states to the supramolecular symmetry of the RET-pair, offering reliable design strategies to optimize RET-interactions.

Graphical abstract: Beyond the Förster formulation for resonance energy transfer: the role of dark states

Supplementary files

Article information

Article type
Paper
Submitted
01 Apr 2011
Accepted
17 May 2011
First published
15 Jun 2011

Phys. Chem. Chem. Phys., 2011,13, 12734-12744

Beyond the Förster formulation for resonance energy transfer: the role of dark states

C. Sissa, A. K. Manna, F. Terenziani, A. Painelli and S. K. Pati, Phys. Chem. Chem. Phys., 2011, 13, 12734 DOI: 10.1039/C1CP21004A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements