Issue 47, 2011

Unravelling the details of vitamin D photosynthesis by non-adiabatic molecular dynamics simulations

Abstract

We investigate the photodynamics of vitamin D derivatives by a fully analytical implementation of the linear response time-dependent density functional theory surface hopping method (LR-TDDFT-SH). Our study elucidates the dynamics of the processes involved in vitamin D formation at the molecular level and with femtosecond resolution. We explain the major experimental findings and provide new insights that cannot directly be obtained from experiments: firstly, we investigate the dynamics of the photoinduced ring-opening of provitamin D (Pro) and cyclohexadiene (CHD) and the subsequent rotational isomerization. In agreement with recent experiments and CC2 calculations, only the bright S1 state is involved in the ring-opening reaction. Our calculations confirm the experimentally reported 5 : 1 ratio between the excited state lifetimes of Pro and CHD. The longer lifetimes of Pro are attributed to steric constraints of the steroid skeleton and to temperature effects, both emerging directly from our simulations. For CHD and Pro, we present an explanation of the biexponential decay recently reported by Sension and coworkers [Tang et al., J. Phys. Chem., 2011, 134, 104503]: our calculations suggest that the fast and slow components arise from a reactive and an unreactive reaction pathway, respectively. Secondly, we assess the wavelength dependent photochemistry of previtamin D (Pre). Using replica exchange molecular dynamics we sample the Pre conformers present at thermal equilibrium. Based on this ensemble we explain the conformation dependent absorption and the essential features of Pre photochemistry. Consistent with the experiments, we find ring-closure to occur mostly after excitation of the cZc conformers and at lower energies, whereas Z/Eisomerization of the central double bond preferably occurs after excitation at higher energies. For the isomerization we provide the first theoretical evidence of the proposed hula-twist mechanism. Our results show that LR-TDDFT-SH is a highly valuable tool for studying the photochemistry of moderately large systems, even though challenges remain in the vicinity of conical intersections.

Graphical abstract: Unravelling the details of vitamin D photosynthesis by non-adiabatic molecular dynamics simulations

Supplementary files

Article information

Article type
Paper
Submitted
23 Apr 2011
Accepted
29 Sep 2011
First published
21 Oct 2011

Phys. Chem. Chem. Phys., 2011,13, 20986-20998

Unravelling the details of vitamin D photosynthesis by non-adiabatic molecular dynamics simulations

E. Tapavicza, A. M. Meyer and F. Furche, Phys. Chem. Chem. Phys., 2011, 13, 20986 DOI: 10.1039/C1CP21292C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements