Issue 43, 2011

Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12

Abstract

The solid lithium-ion electrolyte “Li7La3Zr2O12” (LLZO) with a garnet-type structure has been prepared in the cubic and tetragonal modification following conventional ceramic syntheses routes. Without aluminium doping tetragonal LLZO was obtained, which shows a two orders of magnitude lower room temperature conductivity than the cubic modification. Small concentrations of Al in the order of 1 wt% were sufficient to stabilize the cubic phase, which is known as a fast lithium-ion conductor. The structure and ion dynamics of Al-doped cubic LLZO were studied by impedance spectroscopy, dc conductivity measurements, 6Li and 7Li NMR, XRD, neutron powder diffraction, and TEM precession electron diffraction. From the results we conclude that aluminium is incorporated in the garnet lattice on the tetrahedral 24dLi site, thus stabilizing the cubic LLZO modification. Simulations based on diffraction data show that even at the low temperature of 4 K the Li ions are blurred over various crystallographic sites. This strong Li ion disorder in cubic Al-stabilized LLZO contributes to the high conductivity observed. The Li jump rates and the activation energy probed by NMR are in very good agreement with the transport parameters obtained from electrical conductivity measurements. The activation energy Ea characterizing long-range ion transport in the Al-stabilized cubic LLZO amounts to 0.34 eV. Total electric conductivities determined by ac impedance and a four point dc technique also agree very well and range from 1 × 10−4 Scm−1 to 4 × 10−4 Scm−1 depending on the Al content of the samples. The room temperature conductivity of Al-free tetragonal LLZO is about two orders of magnitude lower (2 × 10−6 Scm−1, Ea = 0.49 eV activation energy). The electronic partial conductivity of cubic LLZO was measured using the Hebb–Wagner polarization technique. The electronic transference number te is of the order of 10−7. Thus, cubic LLZO is an almost exclusive lithium ion conductor at ambient temperature.

Graphical abstract: Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”

Supplementary files

Additions and corrections

Article information

Article type
Paper
Submitted
28 Jun 2011
Accepted
30 Aug 2011
First published
10 Oct 2011

Phys. Chem. Chem. Phys., 2011,13, 19378-19392

Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12

H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle and J. Janek, Phys. Chem. Chem. Phys., 2011, 13, 19378 DOI: 10.1039/C1CP22108F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements