Issue 2, 2012

Tin oxide-surface modified anatase titanium(iv) dioxide with enhanced UV-light photocatalytic activity

Abstract

[Sn(acac)2]Cl2 is chemisorbed on the surfaces of anatase TiO2via ion-exchange between the complex ions and H+ released from the surface Ti–OH groups without liberation of the acetylacetonate ligand (Sn(acac)2/TiO2). The post-heating at 873 K in air forms tin oxide species on the TiO2 surface in a highly dispersed state on a molecular scale ((SnO2)m/TiO2). A low level of this p block metal oxide surface modification (∼0.007 Sn ions nm−2) accelerates the UV-light-activities for the liquid- and gas-phase reactions, whereas in contrast to the surface modification with d block metal oxides such as FeOx and NiO, no visible-light response is induced. Electrochemical measurements and first principles density functional theory (DFT) calculations for (SnO2)m/TiO2 model clusters (m = 1, 2) indicate that the bulk (TiO2)-to-surface interfacial electron transfer (BS-IET) enhances charge separation and the following electron transfer to O2 to increase the photocatalytic activity.

Graphical abstract: Tin oxide-surface modified anatase titanium(iv) dioxide with enhanced UV-light photocatalytic activity

Article information

Article type
Paper
Submitted
24 Aug 2011
Accepted
28 Oct 2011
First published
16 Nov 2011

Phys. Chem. Chem. Phys., 2012,14, 705-711

Tin oxide-surface modified anatase titanium(IV) dioxide with enhanced UV-light photocatalytic activity

M. Fujishima, Q. Jin, H. Yamamoto, H. Tada and M. Nolan, Phys. Chem. Chem. Phys., 2012, 14, 705 DOI: 10.1039/C1CP22708D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements