Issue 6, 2012

Signal amplification using functional nanomaterials for biosensing

Abstract

Signal amplification based on biofunctional nanomaterials has recently attracted considerable attention due to the need for ultrasensitive bioassays and the trend towards miniaturized assays. The biofunctional nanomaterials can not only produce a synergic effect among catalytic activity, conductivity and biocompatibility to accelerate the signal transduction, but also provide amplified recognition events by high loading of signal tags, leading to a highly sensitive and specific biosensing. Most importantly, nanoscaled materials are in direct contact with the environment, which permits them to act as chemical and biological sensors in single-molecule detection of biomolecules. In this tutorial review, we will focus on recent significant advances in signal amplification strategies combining the cross-disciplines of chemistry, biology, and materials science, and highlight some elegant applications of biofunctional nanomaterials as excellent electronic or optical signal tags in ultrasensitive bioanalysis. The biofunctional nanomaterials-based biosensing opens a series of concepts for basic research and offers new tools for detection of trace amounts of a wide variety of analytes in clinical, environmental, and industrial applications.

Graphical abstract: Signal amplification using functional nanomaterials for biosensing

Article information

Article type
Tutorial Review
Submitted
03 Oct 2011
First published
25 Jan 2012

Chem. Soc. Rev., 2012,41, 2122-2134

Signal amplification using functional nanomaterials for biosensing

J. Lei and H. Ju, Chem. Soc. Rev., 2012, 41, 2122 DOI: 10.1039/C1CS15274B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements