Issue 10, 2011

Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling

Abstract

Alpha-Fe2O3 is cheap and abundant, and has a visible light indirect (phonon assisted) band gap of 2.06 eV (600 nm) due to a d–d transition, and a direct band gap at 3.3 eV (375 nm), associated with the ligand to metal charge transfer process. Here we describe results on using freely dispersed Fe2O3 nanocrystals for photocatalytic water oxidation. Three morphologies of hematite were compared, including bulk-type-α-Fe2O3 (Bulk-Fe2O3, 120 nm), ultrasonicated Bulk-Fe2O3 (Sonic-Fe2O3, 44 nm), and synthetic Fe2O3 (Nano-Fe2O3, 5.4 nm) obtained by hydrolysis of FeCl3·6H2O. According to X-ray diffraction, all phases were presented in the alpha structure type, with Nano-Fe2O3 also containing traces of β-FeOOH. UV/Vis diffuse reflectance revealed an absorption edge near 600 nm (EG = 2.06 eV) for all materials. Cyclic voltammetry gave the water oxidation overpotentials (versusNHE at pH = 7, at 1.0 mA cm−2) as η = +0.43 V for Nano-Fe2O3, η = +0.63 V for Sonic-Fe2O3, and η = +0.72 V for Bulk-Fe2O3. Under UV and visible irradiation from a 300 W Xe-arc lamp, all three materials (5.6 mg) evolved O2 from water with 20.0 mM aqueous AgNO3 as sacrificial electron acceptor. The highest rates were obtained under UV/Vis (>250 nm) irradiation with 250 μmol h−1 g−1 for Bulk-Fe2O3, 381 μmol h−1 g−1 for Sonic-Fe2O3 and 1072 μmol h−1 g−1 for Nano-Fe2O3. Turnover numbers (TON = moles O2/moles Fe2O3) were above unity for Nano-Fe2O3 (1.13) and Sonic-Fe2O3 (1.10) but not for Bulk-Fe2O3 (0.49), showing that the nanoscale morphology was beneficial for catalytic activity.

Graphical abstract: Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling

Article information

Article type
Paper
Submitted
10 Jul 2011
Accepted
28 Jul 2011
First published
17 Aug 2011

Energy Environ. Sci., 2011,4, 4270-4275

Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling

T. K. Townsend, E. M. Sabio, N. D. Browning and F. E. Osterloh, Energy Environ. Sci., 2011, 4, 4270 DOI: 10.1039/C1EE02110A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements