Volume 152, 2011

A periodic DFT study of the activation of O2 by Au nanoparticles on α-Fe2O3

Abstract

Oxidation chemistry with supported Au nanoparticles as catalysts is an area of intense research. Even so there is still much discussion as to the nature of Au species generated on the complex surfaces of these catalysts and the types of oxygen species that are present. Recent experimental work has highlighted Au bi-layers with dimensions of 0.5 nm supported on iron oxide as a very efficient catalyst system for CO oxidation. This size scale implies clusters containing only 10 Au atoms, making the simulation of the nanoparticles, oxide surface and their interface amenable to perioidic density functional theory calculations. We present simulation results which demonstrate that the dissociation of O2 is energetically favourable at the interface between nanoparticle and oxide, with both surface Fe cations and Au atoms taking part in the adsorption site. Here the barrier to dissociation of O2 is found to be lower than the energy required for molecular desorption which is not the case for isolated Au clusters. This reaction also produces oxidised Au atoms, as confirmed by Bader charge analysis. For isolated clusters we show that such oxidised Au species give rise to empty d-band states, whereas molecular adsorption of O2 does not.

  • This article is part of the themed collection: Gold

Article information

Article type
Paper
Submitted
25 Feb 2011
Accepted
31 Mar 2011
First published
01 Aug 2011

Faraday Discuss., 2011,152, 135-151

A periodic DFT study of the activation of O2 by Au nanoparticles on α-Fe2O3

K. L. Howard and D. J. Willock, Faraday Discuss., 2011, 152, 135 DOI: 10.1039/C1FD00026H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements