Issue 10, 2011

Ruthenium–alkylidene catalysed cross-metathesis of fatty acid derivatives with acrylonitrile and methyl acrylate: a key step toward long-chain bifunctional and amino acid compounds

Abstract

The ruthenium catalysed cross-metathesis of fatty-esters arising from plant oils with acrylonitrile is presented. The resulting linear nitrile ester products have potential as new intermediates for polyamides synthesis. A series of commercially available catalysts are able to promote the transformation of methyl 10-undecenoate 1, dimethyl octadec-9-en-1,18-dioate 5 and methyl ricinoleate 9 with acrylonitrile and a protocol based on the slow addition of catalyst allowed TONs as high as 1900 (92% yield) to be reached for cross-metathesis with acrylonitrile. These cross-metathesis conditions have been applied to methyl acrylate and TONs up to 7600 were obtained.

Graphical abstract: Ruthenium–alkylidene catalysed cross-metathesis of fatty acid derivatives with acrylonitrile and methyl acrylate: a key step toward long-chain bifunctional and amino acid compounds

Supplementary files

Article information

Article type
Paper
Submitted
17 May 2011
Accepted
18 Jul 2011
First published
25 Aug 2011

Green Chem., 2011,13, 2911-2919

Ruthenium–alkylidene catalysed cross-metathesis of fatty acid derivatives with acrylonitrile and methyl acrylate: a key step toward long-chain bifunctional and amino acid compounds

X. Miao, R. Malacea, C. Fischmeister, C. Bruneau and P. H. Dixneuf, Green Chem., 2011, 13, 2911 DOI: 10.1039/C1GC15569E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements