Issue 26, 2011

Highly defective MgO nanosheets from colloidal self-assembly

Abstract

Highly defective magnesium oxide nanosheets were synthesized using a colloidal synthesis in which magnesium ethoxide was thermally decomposed in high-boiling-point weakly coordinating solvents. The nanosheets were assembled of small nanocrystal building blocks by oriented attachment. This assembly could be inhibited by using a strongly coordinating surfactant, such as oleic acid. The 2–3 nm spaced extended defects formed at the grain boundaries make up a material with a record defect density which causes an increased conductivity and dielectric constant, strong luminescence and paramagnetism. The point defect type prevailing at those interfaces is apparently charged oxygen vacancies. In situTEM annealing experiments showed that the extended defects begin to anneal out at temperatures as low as 300 °C, but a high density of point defects apparently survives even at 750 °C.

Graphical abstract: Highly defective MgO nanosheets from colloidal self-assembly

Supplementary files

Article information

Article type
Paper
Submitted
12 Jan 2011
Accepted
04 May 2011
First published
02 Jun 2011

J. Mater. Chem., 2011,21, 9532-9537

Highly defective MgO nanosheets from colloidal self-assembly

B. M. Maoz, E. Tirosh, M. B. Sadan, I. Popov, Y. Rosenberg and G. Markovich, J. Mater. Chem., 2011, 21, 9532 DOI: 10.1039/C1JM10181A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements