Issue 36, 2011

Graphene/cellulose nanocomposite paper with high electrical and mechanical performances

Abstract

Graphene/cellulose nanocomposite paper with high mechanical and electrical performances was reported in this study by combining reduced graphene oxide sheets (RGO) and amine-modified nanofibrillated cellulose (A-NFC) in a well-controlled manner. By adjusting the GO content, various graphene/cellulose nanocomposites with 0.1–10 wt% content of graphene were obtained. The RGO/A-NFC nanocomposite synthesized by the developed method exhibits an electrical percolation threshold of 0.3 wt% with an electrical conductivity of 4.79 × 10−4 S m−1, which is well above the antistatic value. Furthermore, with 10 wt% of graphene, a high conductivity of 71.8 S m−1 was measured for the nanocomposite. Moreover, it was found that on addition of only 0.3 wt% of graphene, the tensile strength increased by 1.2 fold and 2.3 folds compared to that of the neat cellulose and graphene oxide paper, respectively, revealing an excellent reinforcement of graphene sheets. Moreover, the elongation at break of the composite with graphene content was 8.5%, which is similar to that of A-NFC paper and much higher than that of GO paper. It is noteworthy to mention that with 5 wt% of graphene, the RGO/A-NFC composite paper showed a significantly enhanced tensile strength of 273 MPa that is 1.4 fold and 2.8 folds higher than that of the cellulose papers and graphene oxide paper, respectively. Such a high enhancement of electrical and mechanical properties in cellulose paper by graphene has never been reported before for any carbon-based material/cellulose composite paper.

Graphical abstract: Graphene/cellulose nanocomposite paper with high electrical and mechanical performances

Supplementary files

Article information

Article type
Paper
Submitted
13 May 2011
Accepted
17 Jun 2011
First published
08 Aug 2011

J. Mater. Chem., 2011,21, 13991-13998

Graphene/cellulose nanocomposite paper with high electrical and mechanical performances

N. D. Luong, N. Pahimanolis, U. Hippi, J. T. Korhonen, J. Ruokolainen, L. Johansson, J. Nam and J. Seppälä, J. Mater. Chem., 2011, 21, 13991 DOI: 10.1039/C1JM12134K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements