Issue 4, 2012

Hydration and proton conductivity in LaAsO4

Abstract

Incorporation and transport of protonic defects have been studied in nominally undoped and 1 and 3 mol% Sr-doped LaAsO4 prepared by a co-precipitation route. AC impedance of the materials was measured as a function of temperature (1150 to 400 °C), pO2 (1 to 1 × 10−5 atm) and pH2O (0.025 to 3 × 10−5 atm). The bulk conductivities generally decrease with decreasing temperature and moreover with decreasing pH2O within the whole temperature range. At the highest temperatures, a small decrease in the conductivity with decreasing pO2 was also observed. The defect structure of Sr-doped LaAsO4 appears to be dominated by oxygen vacancies in the form of pyroarsenate ions, As2O4−7, in dry atmospheres at high temperatures and by protonic defects in the form of hydrogen arsenate ions, HAsO2−4, in wet atmospheres. A significant isotope effect shows that protons contribute to the total conductivity at all temperatures under wet conditions and predominate at temperatures below ∼850 °C. The remaining contributions are attributed to oxide ions and electron holes. The extracted hydration thermodynamics are comparable to those determined for other LnXO4 (X = P, V, Nb, Ta) compounds, and the enthalpy of mobility of protons (86 ± 5 and 88 ± 5 kJ mol−1 for the 1 and 3 mol% doped samples, respectively) follows an apparent trend for the isostructural LaXO4 (X = P, As, V) series with the enthalpy of mobility of protons decreasing with increasing radius of the X-site cation. However, the partial proton conductivities of Sr-doped LaAsO4 are lower than those determined for acceptor doped LaPO4 and LaVO4 for which the possible reasons are discussed.

Graphical abstract: Hydration and proton conductivity in LaAsO4

Article information

Article type
Paper
Submitted
26 Aug 2011
Accepted
27 Oct 2011
First published
01 Dec 2011

J. Mater. Chem., 2012,22, 1652-1661

Hydration and proton conductivity in LaAsO4

T. S. Bjørheim, T. Norby and R. Haugsrud, J. Mater. Chem., 2012, 22, 1652 DOI: 10.1039/C1JM14192A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements