Issue 48, 2011

Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels

Abstract

A novel colorimetric sensor for cholesterol assay was constructed by combining a molecular imprinting technique with photonic crystals. The molecularly imprinted photonic hydrogel (MIPH) film was prepared by a non-covalent, self-assembly approach using cholesterol as a template molecule, and exhibited a highly ordered three-dimensional macroporous structure characterized by scanning electron microscopy under the optimized imprinting conditions. Various factors affecting rebinding of cholesterol are discussed along with recognition specificity studies on its analogues of stigmasterol and ergosterol through estimation of UV-Vis and electrochemical impedance spectroscopy. The MIPH film generated a significantly readable optical signal directly self-reporting within less than 2 min upon binding cholesterol. The colorimetric measurement of cholesterol concentration strongly relies on the fact that the blue shift effect of the Bragg diffraction peak of the MIPH is gradually enlarged with the increase of cholesterol amounts. The detection level approached 10−13 g mL−1, which is comparable to that of fluorescence measurements. The simultaneous possession of high selectivity, high sensitivity, high stability, easy operation and being label-free enables this sensor to be potentially applicable for rapid on-site detection of trace cholesterol.

Graphical abstract: Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels

Supplementary files

Article information

Article type
Paper
Submitted
29 Aug 2011
Accepted
06 Oct 2011
First published
02 Nov 2011

J. Mater. Chem., 2011,21, 19267-19274

Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels

J. Li, Z. Zhang, S. Xu, L. Chen, N. Zhou, H. Xiong and H. Peng, J. Mater. Chem., 2011, 21, 19267 DOI: 10.1039/C1JM14230E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements