Issue 10, 2012

Construction of full-color-tunable and strongly emissive materials by functionalizing a boron-chelate four-ring-fused π-conjugated core

Abstract

2-(2′-Hydroxyphenyl)benzoxazole (HBO) and 2-(2′-hydroxyphenyl)benzothiazole (HBT) reacted with triphenylborane produced two rigid π-conjugated fluorescent cores 1 (BPh2(BOZ), BOZ = 2-(benzo[d]oxazol-2-yl)phenol) and 2 (BPh2(BTZ), BTZ = 2-(benzo[d]thiazol-2-yl)phenol). Comparisons of photophysical properties and calculations between para- and meta-diphenylamine-substituted derivatives 5 (BPh2(para-NPh2-BTZ)) and 7 (BPh2(meta-NPh2-BTZ)) demonstrated that functionalization at the para-position of the rigid core is effective in tuning the electronic structure and hence the photophysical properties of this type of boron-chelate complex. Simple modification of these frameworks by introducing various amine groups at the para-position allows the synthesis of strongly fluorescent materials 3 (BPh2(para-Cz-BTZ), Cz = 9H-carbazol-9-yl), 4 (BPh2(para-NPh2-BOZ), NPh2 = diphenylamino), 5, and 6 (BPh2(para-NMe2-BTZ), NMe2 = dimethylamino). The emission colors of these newly synthesized complexes together with the parent complexes 1 and 2 covered a wide range from deep blue to saturated red in both solution and the solid state. Crystal structure analysis discloses that two phenyl groups attached to the boron atom effectively keep the luminescent ring-fused π-conjugated skeletons apart, making these fluorophores highly emissive in solid forms (ΦF = 0.36–0.71). Organic light-emitting diodes employing these boron complexes as emitters not only keep the full-color tunable emission feature but also show high electroluminescent (EL) performance; for instance, the greenish-blue device based on 2 showed the highest efficiency of 7.8 cd A−1 and the yellow light-emitting device based on 4 exhibited the highest brightness (31 220 cd m−2) among the boron-containing emitters reported so far.

Graphical abstract: Construction of full-color-tunable and strongly emissive materials by functionalizing a boron-chelate four-ring-fused π-conjugated core

Supplementary files

Article information

Article type
Paper
Submitted
16 Sep 2011
Accepted
09 Nov 2011
First published
16 Dec 2011

J. Mater. Chem., 2012,22, 4319-4328

Construction of full-color-tunable and strongly emissive materials by functionalizing a boron-chelate four-ring-fused π-conjugated core

D. Li, H. Zhang, C. Wang, S. Huang, J. Guo and Y. Wang, J. Mater. Chem., 2012, 22, 4319 DOI: 10.1039/C1JM14606H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements