Issue 12, 2011

On-chip background noise reduction for cell-based assays in droplets

Abstract

Droplet-based microfluidics provides an excellent platform for high-throughput biological assays. Each droplet serves as a reaction vessel with a volume as small as a few picolitres. This is an important technology for a high variety of applications. However this technology is restricted to homogeneous assays as it is very difficult to wash reagents from the reaction vessel. To help overcome this limitation, we introduce a method to effectively dilute the content of a droplet while retaining the high throughput. We use electrocoalescence to merge the parent drop with a much larger drop containing only solvent, thereby increasing the volume of the drop by as much as a factor of 14. Three T-junctions then break the larger drop into eight smaller droplets. This dilution and break-up process can be repeated, thus leading to many drops comparable in size to the original one but with much lower concentration of reagents. The system is fully integrated in a PDMS device. To demonstrate its power, we perform a labelling reaction at the surface of the cells by coencapsulating yeast cells expressing S6 peptide tags with the enzyme SFP synthase and the fluorescent substrate CoA 488. After reaction, the droplets are diluted twice using the system and the intensity of their fluorescence is measured. This noise reduction method enables us to more easily distinguish the fluorescence at the surface of a single cell from the fluorescent background inside the droplet.

Graphical abstract: On-chip background noise reduction for cell-based assays in droplets

Supplementary files

Article information

Article type
Paper
Submitted
24 Feb 2011
Accepted
04 Apr 2011
First published
03 May 2011

Lab Chip, 2011,11, 2066-2070

On-chip background noise reduction for cell-based assays in droplets

P. Mary, A. Chen, I. Chen, A. R. Abate and D. A. Weitz, Lab Chip, 2011, 11, 2066 DOI: 10.1039/C1LC20159J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements