Issue 14, 2011

Microfabricated polyester conical microwells for cell culture applications

Abstract

Over the past few years there has been a great deal of interest in reducing experimental systems to a lab-on-a-chip scale. There has been particular interest in conducting high-throughput screening studies using microscale devices, for example in stem cell research. Microwells have emerged as the structure of choice for such tests. Most manufacturing approaches for microwell fabrication are based on photolithography, soft lithography, and etching. However, some of these approaches require extensive equipment, lengthy fabrication process, and modifications to the existing microwell patterns are costly. Here we show a convenient, fast, and low-cost method for fabricating microwells for cell culture applications by laser ablation of a polyester film coated with silicone glue. Microwell diameter was controlled by adjusting the laser power and speed, and the well depth by stacking several layers of film. By using this setup, a device containing hundreds of microwells can be fabricated in a few minutes to analyze cell behavior. Murine embryonic stem cells and human hepatoblastoma cells were seeded in polyester microwells of different sizes and showed that after 9 days in culture cell aggregates were formed without a noticeable deleterious effect of the polyester film and glue. These results show that the polyester microwell platform may be useful for cell culture applications. The ease of fabrication adds to the appeal of this device as minimal technological skill and equipment is required.

Graphical abstract: Microfabricated polyester conical microwells for cell culture applications

Supplementary files

Article information

Article type
Paper
Submitted
09 Mar 2011
Accepted
21 Apr 2011
First published
26 May 2011

Lab Chip, 2011,11, 2325-2332

Microfabricated polyester conical microwells for cell culture applications

Š. Selimović, F. Piraino, H. Bae, M. Rasponi, A. Redaelli and A. Khademhosseini, Lab Chip, 2011, 11, 2325 DOI: 10.1039/C1LC20213H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements