Issue 22, 2011

Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy

Abstract

The novel combination of optical tweezers and fluorescence lifetime imaging microscopy (FLIM) has been used, in conjunction with specially developed temperature-sensitive fluorescent microprobes, for the non-invasive measurement of temperature in a microfluidic device. This approach retains the capability of FLIM to deliver quantitative mapping of microfluidic temperature without the disadvantageous need to introduce a fluorescent dye that pervades the entire micofluidic system. This is achieved by encapsulating the temperature-sensitive Rhodamine B fluorophore within a microdroplet which can be held and manipulated in the microfluidic flow using optical tweezers. The microdroplet is a double bubble in which an aqueous droplet of the fluorescent dye is surrounded by an oil shell which serves both to contain the fluorophore and to provide the refractive index differential required for optical trapping of the droplet in an external aqueous medium.

Graphical abstract: Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy

Supplementary files

Article information

Article type
Paper
Submitted
06 May 2011
Accepted
31 Aug 2011
First published
28 Sep 2011

Lab Chip, 2011,11, 3821-3828

Optically trapped microsensors for microfluidic temperature measurement by fluorescence lifetime imaging microscopy

M. A. Bennet, P. R. Richardson, J. Arlt, A. McCarthy, G. S. Buller and A. C. Jones, Lab Chip, 2011, 11, 3821 DOI: 10.1039/C1LC20391F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements