Issue 21, 2011

Microfluidic chamber arrays for whole-organism behavior-based chemical screening

Abstract

The nematode Caenorhabditis elegans is an important model organism in genetic research and drug screening because of its relative simplicity, ease of maintenance, amenability to simple genetic manipulation, and relevance to human biology. However, their small size and mobility make nematodes difficult to physically manipulate, particularly with spatial and temporal precision. We have developed a microfluidic device to overcome these challenges and enable fast behavior-based chemical screening in C. elegans. The key components of this easy-to-use device allow rapid loading and housing of C. elegans in a chamber array for chemical screening. A simple two-step loading process enables simultaneous loading of a large number of animals within a few minutes without using any expensive/active off-chip components. In addition, chemicals can be precisely delivered to the worms and exchanged with high temporal precision. To demonstrate this feature and the ability to measure time dependent responses to chemicals, we characterize the transient response of worms exposed to different concentrations of anesthetics. We then use the device to study the effect of chemical signals from hermaphrodite worms on male behavior. The ability of the device to maintain a large number of free moving animals in one field of view over a long period of time permits us to demonstrate an increase in the incidence of a specific behavior in males subjected to worm-conditioned medium. Because our device allows monitoring of a large number of worms with single-animal resolution, we envision that this platform will greatly expedite chemical screening in C. elegans.

Graphical abstract: Microfluidic chamber arrays for whole-organism behavior-based chemical screening

Supplementary files

Article information

Article type
Paper
Submitted
10 May 2011
Accepted
30 Aug 2011
First published
20 Sep 2011

Lab Chip, 2011,11, 3689-3697

Microfluidic chamber arrays for whole-organism behavior-based chemical screening

K. Chung, M. Zhan, J. Srinivasan, P. W. Sternberg, E. Gong, F. C. Schroeder and H. Lu, Lab Chip, 2011, 11, 3689 DOI: 10.1039/C1LC20400A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements