Issue 8, 2011

Engineered nanoparticles for biomolecular imaging

Abstract

In recent years, the production of nanoparticles (NPs) and exploration of their unusual properties have attracted the attention of physicists, chemists, biologists and engineers. Interest in NPs arises from the fact that the mechanical, chemical, electrical, optical, magnetic, electro-optical and magneto-optical properties of these particles are different from their bulk properties and depend on the particle size. There are numerous areas where nanoparticulate systems are of scientific and technological interest, particularly in biomedicine where the emergence of NPs with specific properties (e.g. magnetic and fluorescence) for contrast agents can lead to advancing the understanding of biological processes at the biomolecular level. This review will cover a full description of the physics of various imaging methods, including MRI, optical techniques, X-rays and CT. In addition, the effect of NPs on the improvement of the mentioned non-invasive imaging methods will be discussed together with their advantages and disadvantages. A detailed discussion will also be provided on the recent advances in imaging agents, such as fluorescent dye-doped silica NPs, quantum dots, gold- and engineered polymeric-NPs, superparamagnetic iron oxide NPs (SPIONs), and multimodal NPs (i.e. nanomaterials that are active in both MRI and optical methods), which are employed to overcome many of the limitations of conventional contrast agents (e.g. gadolinium).

Graphical abstract: Engineered nanoparticles for biomolecular imaging

Article information

Article type
Review Article
Submitted
28 Mar 2011
Accepted
28 Apr 2011
First published
29 Jun 2011

Nanoscale, 2011,3, 3007-3026

Engineered nanoparticles for biomolecular imaging

M. Mahmoudi, V. Serpooshan and S. Laurent, Nanoscale, 2011, 3, 3007 DOI: 10.1039/C1NR10326A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements