Issue 18, 2011

Effect of physical state (solid vs. liquid) of lipid core on the rate of transport of oxygen and free radicals in solid lipidnanoparticles and emulsion

Abstract

Solid lipid nanoparticles (SLNs) may have significant potential to limit oxidation of encapsulated bioactive compounds. This is based on the hypothesis that the solid core in SLNs can significantly limit the rate of transport of oxygen and free radicals into the lipid core from the aqueous phase. In this study, we have directly compared the rate of transport of oxygen and free radicals in SLNs and liquid emulsion prepared from the same lipid material (eicosane) at a fixed temperature. Eicosane nanoparticles stabilized by high melting lecithin and bile salts were used as a model system. The physical state (solid vs. liquid) of the lipid phase was engineered using the supercooling phenomenon of emulsified eicosane. Transport of oxygen and free radicals was measured based on changes in fluorescence intensity of oxygen or peroxyl radical sensitive dyes encapsulated in the lipid phase upon exposure to either air or peroxyl radicals generated in the aqueous phase. The results showed that the rate of oxygen transport was marginally reduced in SLNs as compared to liquid emulsion, while the rate of transport of peroxyl free radicals was not significantly affected by the physical state of the lipid core in SLNs and emulsion. Together, these results indicated that the solid core of SLNs does not significantly reduce the rate of transport of oxygen or free radicals as compared to the liquid core emulsion. To address this paradox, the distribution of encapsulated dye was characterized in both SLNs and emulsion using fluorescence imaging. The results showed significant redistribution of the encapsulated dye molecules with formation of the solid lipid core. In contrast to homogeneous distribution in the liquid emulsion, SLNs showed higher concentration of the dye at the periphery as compared to the center of the lipid droplet. The expulsion of encapsulated molecules to the surface of SLNs can potentially limit the ability of the solid core to protect encapsulated products from oxygen and free radicals.

Graphical abstract: Effect of physical state (solid vs. liquid) of lipid core on the rate of transport of oxygen and free radicals in solid lipid nanoparticles and emulsion

Article information

Article type
Paper
Submitted
11 Jan 2011
Accepted
09 Jun 2011
First published
21 Jul 2011

Soft Matter, 2011,7, 8149-8157

Effect of physical state (solid vs. liquid) of lipid core on the rate of transport of oxygen and free radicals in solid lipid nanoparticles and emulsion

R. V. Tikekar and N. Nitin, Soft Matter, 2011, 7, 8149 DOI: 10.1039/C1SM05031A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements