Issue 24, 2011

Self-assembly of Fmoc-tetrapeptides based on the RGDS cell adhesion motif

Abstract

Self-assembly in aqueous solution has been investigated for two Fmoc [Fmoc = N-(fluorenyl)-9-methoxycarbonyl] tetrapeptides comprising the RGDS cell adhesion motif from fibronectin or the scrambled sequence GRDS. The hydrophobic Fmoc unit confers amphiphilicity on the molecules, and introduces aromatic stacking interactions. Circular dichroism and FTIR spectroscopy show that the self-assembly of both peptides at low concentration is dominated by interactions among Fmoc units, although Fmoc-GRDS shows β-sheet features, at lower concentration than Fmoc-RGDS. Fibre X-ray diffraction indicates β-sheet formation by both peptides at sufficiently high concentration. Strong alignment effects are revealed by linear dichroism experiments for Fmoc-GRDS. Cryo-TEM and small-angle X-ray scattering (SAXS) reveal that both samples form fibrils with a diameter of approximately 10 nm. Both Fmoc-tetrapeptides form self-supporting hydrogels at sufficiently high concentration. Dynamic shear rheometry enabled measurements of the moduli for the Fmoc-GRDS hydrogel, however syneresis was observed for the Fmoc-RGDS hydrogel which was significantly less stable to shear. Molecular dynamics computer simulations were carried out considering parallel and antiparallel β-sheet configurations of systems containing 7 and 21 molecules of Fmoc-RGDS or Fmoc-GRDS, the results being analyzed in terms of both intermolecular structural parameters and energy contributions.

Graphical abstract: Self-assembly of Fmoc-tetrapeptides based on the RGDS cell adhesion motif

Article information

Article type
Paper
Submitted
12 Aug 2011
Accepted
05 Oct 2011
First published
20 Oct 2011

Soft Matter, 2011,7, 11405-11415

Self-assembly of Fmoc-tetrapeptides based on the RGDS cell adhesion motif

V. Castelletto, C. M. Moulton, G. Cheng, I. W. Hamley, M. R. Hicks, A. Rodger, D. E. López-Pérez, G. Revilla-López and C. Alemán, Soft Matter, 2011, 7, 11405 DOI: 10.1039/C1SM06550E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements