Issue 15, 2012

A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food

Abstract

A molecularly imprinted photonic polymer (MIPP) sensor for respective detection of tetracycline, oxytetracycline and chlortetracycline is developed based on the combination of a colloidal crystal templating method and a molecular imprinting technique. Colloidal crystal templates are prepared from monodisperse polystyrene colloids. The molecularly imprinted polymer, which is embodied in the colloidal crystal templates, is synthesized with acrylic acid and acrylamide as monomers, N,N′-methylene bisacrylamide as a cross-linker and tetracyclines (TCs) as imprinting template molecules. After removal of the colloidal crystal template and the molecularly imprinted template, the resulted MIPP consists of a three-dimensional, highly ordered and interconnected macroporous array with a thin hydrogel wall, where nanocavities complementary to analytes in shape and binding sites are distributed. The response of MIPP to TCs stimulants in aqueous solution is detected through a readable Bragg diffraction red-shift, which is due to the lattice change of MIPP structures responding to their rebinding to the target TCs molecules. A linear relationship was found between the Δλ and the concentration of TCs in the range from 0.04 μM to 0.24 μM. With this sensory system, direct and selective detection of TCs has been achieved without using label techniques and expensive instruments. The developed method has been applied successfully to detect tetracycline in milk and honey samples.

Graphical abstract: A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food

Article information

Article type
Paper
Submitted
20 Feb 2012
Accepted
11 May 2012
First published
11 May 2012

Analyst, 2012,137, 3502-3509

A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food

L. Wang, F. Lin and L. Yu, Analyst, 2012, 137, 3502 DOI: 10.1039/C2AN35460H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements