Issue 17, 2012

Hydrated-ion ordering in electrical double layers

Abstract

In this work we revisit the surface forces measured between two atomically flat mica surfaces submerged in a reservoir of potassium nitrate (KNO3) solution. We consider a comprehensive range of concentrations from 0.08 mM to 2.6 M. The significantly improved resolution available from the extended surface force apparatus (eSFA) allows the distinction of hydration structures and hydrated-ion correlations. Above concentrations of 0.3 mM, hydrated-ion correlations give rise to multiple collective transitions (4 ± 1 Å) in the electrical double layers upon interpenetration. These features are interpreted as the result of hydrated-ion ordering (e.g. layering), in contrast to the traditional interpretation invoking water layering. The hydrated-ion layer adjacent to the surface (i.e. outer Helmholtz layer) is particularly well defined and plays a distinctive role. It can be either collectively expelled in a 5.8 ± 0.3 Å film-thickness transition or collectively forced to associate with the surface by external mechanical work. The latter is observed as a characteristic 2.9 ± 0.3 Å film-thickness transition along with an abrupt decrease of surface adhesion at concentrations above 1 mM. At concentrations as low as 20 mM, attractive surface forces are measured in deviation to the DLVO theory. The hydration number in the confined electrolyte seems to be significantly below that of the bulk. A 1–3 nm thick ionic layer solidifies at the surfaces at concentrations >100 mM, i.e. below bulk saturation.

Graphical abstract: Hydrated-ion ordering in electrical double layers

Article information

Article type
Paper
Submitted
25 Jan 2012
Accepted
28 Feb 2012
First published
22 Mar 2012

Phys. Chem. Chem. Phys., 2012,14, 6085-6093

Hydrated-ion ordering in electrical double layers

R. M. Espinosa-Marzal, T. Drobek, T. Balmer and M. P. Heuberger, Phys. Chem. Chem. Phys., 2012, 14, 6085 DOI: 10.1039/C2CP40255F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements