Issue 35, 2012

Rapid calculation of protein chemical shifts using bond polarization theory and its application to protein structure refinement

Abstract

Although difficult to analyze, NMR chemical shifts provide detailed information on protein structure. We have adapted the semi-empirical bond polarization theory (BPT) to protein chemical shift calculation and chemical shift driven protein structure refinement. A new parameterization for BPT amide nitrogen chemical shift calculation has been derived from MP2 ab initio calculations and successfully evaluated using crystalline tripeptides. We computed the chemical shifts of the small globular protein ubiquitin, demonstrating that BPT calculations can match the results obtained at the DFT level of theory at very low computational cost. In addition to the calculation of chemical shift tensors, BPT allows the calculation of chemical shift gradients and consequently chemical shift driven geometry optimizations. We applied chemical shift driven protein structure refinement to the conformational analysis of a set of Trypanosoma brucei (the causative agent of African sleeping sickness) tryparedoxin peroxidase Px III structures. We found that the interaction of Px III with its reaction partner Tpx seems to be governed by conformational selection rather than by induced fit.

Graphical abstract: Rapid calculation of protein chemical shifts using bond polarization theory and its application to protein structure refinement

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2012
Accepted
11 Jul 2012
First published
12 Jul 2012

Phys. Chem. Chem. Phys., 2012,14, 12263-12276

Rapid calculation of protein chemical shifts using bond polarization theory and its application to protein structure refinement

I. Jakovkin, M. Klipfel, C. Muhle-Goll, A. S. Ulrich, B. Luy and U. Sternberg, Phys. Chem. Chem. Phys., 2012, 14, 12263 DOI: 10.1039/C2CP41726J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements