Issue 3, 2013

Observation of rates and products in the reaction of NO3 with submicron squalane and squalene aerosol

Abstract

The reactive uptake coefficients γ, for nitrate radical, NO3, on ∼100 nm diameter squalane and squalene aerosol were measured (1 atm pressure of N2 and 293 K). For squalane, a branched alkane, γNO3 of 2.8 × 10−3 was estimated. For squalene which contains 6 double bonds, γNO3 was found to be a function of degree of oxidation with an initial value of 0.18 ± 0.03 on fresh particles increasing to 0.82 ± 0.11 on average of over 3 NO3 reactions per squalene molecule in the aerosol. Synchrotron VUV-ionization aerosol mass spectrometry was used to detect the particle phase oxidation products that include as many as 3 NO3 subunits added to the squalene backbone. The fraction of squalene remaining in the aerosol follows first order kinetics under oxidation, even at very high oxidation equivalents, which suggests that the matrix remains a liquid upon oxidation. Our calculation indicates a much shorter chemical lifetime for squalene-like particle with respect to NO3 than its atmospheric lifetime to deposition or wet removal.

Graphical abstract: Observation of rates and products in the reaction of NO3 with submicron squalane and squalene aerosol

Supplementary files

Article information

Article type
Paper
Submitted
21 Jul 2012
Accepted
16 Nov 2012
First published
30 Nov 2012

Phys. Chem. Chem. Phys., 2013,15, 882-892

Observation of rates and products in the reaction of NO3 with submicron squalane and squalene aerosol

L. Lee, P. Wooldridge, T. Nah, K. Wilson and R. Cohen, Phys. Chem. Chem. Phys., 2013, 15, 882 DOI: 10.1039/C2CP42500A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements