Issue 8, 2013

Bandgap broadly tunable GaZnSeAs alloy nanowires

Abstract

Composition-tunable semiconductor alloy nanowires are emerging as an important class of materials for the realization of high-performance laterally-arranged multiple bandgap (LAMB) solar cells. Here we report the first growth of GaZnSeAs quaternary alloy nanowires with composed elements between two different groups using a temperature/space-selective CVD route. Under laser excitation, these special quaternary alloy nanowires exhibit composition-related characteristic emissions, with peak wavelengths gradually tunable from 470 nm (2.64 eV) to 832 nm (1.49 eV), covering almost the entire visible spectrum. Surface photovoltage measurements further reveal that these alloy nanowires have tunable bandgaps along the length of the substrate, making them promising candidates for developing high-efficiency LAMB solar cells. These quaternary alloy nanowires represent a new advancement in material synthesis and would have potential applications in a variety of function-tunable and broadband-response optoelectronic devices.

Graphical abstract: Bandgap broadly tunable GaZnSeAs alloy nanowires

Supplementary files

Article information

Article type
Paper
Submitted
22 Oct 2012
Accepted
19 Dec 2012
First published
22 Jan 2013

Phys. Chem. Chem. Phys., 2013,15, 2912-2916

Bandgap broadly tunable GaZnSeAs alloy nanowires

Y. Wang, J. Xu, P. Ren, Q. Zhang, X. Zhuang, X. Zhu, Q. Wan, H. Zhou, W. Hu and A. Pan, Phys. Chem. Chem. Phys., 2013, 15, 2912 DOI: 10.1039/C2CP43718J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements