Issue 11, 2012

Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes

Abstract

The photocathodic H2-evolution performance of Ni–Mo-coated radial n+p junction Si microwire (Si MW) arrays has been evaluated on the basis of thermodynamic energy-conversion efficiency as well as solar cell figures of merit. The Ni–Mo-coated n+p-Si MW electrodes yielded open-circuit photovoltages (Voc) of 0.46 V, short-circuit photocurrent densities (Jsc) of 9.1 mA cm−2, and thermodynamically based energy-conversion efficiencies (η) of 1.9% under simulated 1 Sun illumination. Under nominally the same conditions, the efficiency of the Ni–Mo-coated system was comparable to that of Pt-coated n+p-Si MW array photocathodes (Voc = 0.44 V, Jsc = 13.2 mA cm−2, η = 2.7%). This demonstrates that, at 1 Sun light intensity on high surface area microwire arrays, earth-abundant electrocatalysts can provide performance comparable to noble-metal catalysts for photoelectrochemical hydrogen evolution. The formation of an emitter layer on the microwires yielded significant improvements in the open-circuit voltage of the microwire-array-based photocathodes relative to Si MW arrays that did not have a buried n+p junction. Analysis of the spectral response and light-intensity dependence of these devices allowed for optimization of the catalyst loading and photocurrent density. The microwire arrays were also removed from the substrate to create flexible, hydrogen-evolving membranes that have potential for use in a solar water-splitting device.

Graphical abstract: Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes

Supplementary files

Article information

Article type
Paper
Submitted
16 Aug 2012
Accepted
13 Sep 2012
First published
08 Oct 2012

Energy Environ. Sci., 2012,5, 9653-9661

Hydrogen-evolution characteristics of Ni–Mo-coated, radial junction, n+p-silicon microwire array photocathodes

E. L. Warren, J. R. McKone, H. A. Atwater, H. B. Gray and N. S. Lewis, Energy Environ. Sci., 2012, 5, 9653 DOI: 10.1039/C2EE23192A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements