Issue 20, 2012

Interpenetrated metal–organic frameworks and their uptake of CO2 at relatively low pressures

Abstract

Adsorption-driven separation of CO2 from flue gas has the potential to cut the cost for carbon capture and storage. Among the porous physisorbents, metal–organic frameworks (MOFs) are a class of promising candidates for gas separation and storage owing to their extraordinarily high specific surface areas and pore volumes, and predesigned pore structures. Here, we report three interpenetrated MOFs composed of Zn4O clusters and rigid dicarboxylate anions, namely SUMOF-n (SU = Stockholm University; n = 2, 3, 4). All the interpenetrated MOFs possess small pores of two different types and high pore volumes. SUMOF-2 had a structure similar to interpenetrated MOF-5, but with an extra-framework cation present in one of the two types of pores. SUMOF-3 was an interpenetrated version of IRMOF-8 while SUMOF-4 crystallized with mixed linkers, biphenyl-4,4′-dicarboxylic acid and benzene-1,4-dicarboxylic acid. Among the three SUMOFs, SUMOF-4 had the largest specific surface area (1612 m2 g−1) and pore volume. Single component adsorption of CO2 and N2 was determined at 273 K. We showed that the interpenetrated SUMOF-2 adsorbed more CO2 than non-interpenetrated MOF-5 under 273 K and 1 bar. This may be explained by the increased electric field gradients due to the interpenetration in the MOF. The uptake of CO2 for SUMOF-2 and SUMOF-4 was significant at somewhat higher pressure. Their CO2 isotherms were close to linear, which could be beneficial for separation of CO2via pressure swing adsorption from biogas or natural gas. On the other hand, SUMOF-3 adsorbed most CO2 at pressures relevant for CO2 capture from flue gas.

Graphical abstract: Interpenetrated metal–organic frameworks and their uptake of CO2 at relatively low pressures

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2011
Accepted
08 Feb 2012
First published
23 Mar 2012

J. Mater. Chem., 2012,22, 10345-10351

Interpenetrated metal–organic frameworks and their uptake of CO2 at relatively low pressures

Q. Yao, J. Su, O. Cheung, Q. Liu, N. Hedin and X. Zou, J. Mater. Chem., 2012, 22, 10345 DOI: 10.1039/C2JM15933C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements