Issue 16, 2012

Switchable information carriers based on shape memory polymer

Abstract

Herein we demonstrate the realization of a new technological concept, which enables the use of shape memory polymers (SMPs) as switchable information carriers. At first, we applied a surface-specific dyeing process based on ‘guest-diffusion’ on two sophisticated polymeric host materials, including a thermoplastic poly(ester urethane) SMP and a thermoset epoxy-based SMP. Upon drying, self-assembly of the dye molecules inside the polymer surfaces occurred, resulting in homogeneous color penetration depths of about 100 μm. Subsequently, the colored surfaces were patterned with quick response (QR) codes. For this purpose, laser ablation was used. The resulting cavity depth was exceeding the color penetration depth. This assured sufficient surface contrast and rendered the QR codes machine-readable. In a progressive approach, two thermo-mechanical functionalization protocols were designed in accordance with the thermal properties of the polymers. As a result of programming, the tag prototypes were converted into stable, temporary shapes with non-decodable QR code information. When thermally triggering the shape memory effect on the functionalized tags, we verified the mostly complete recovery of the polymer surface and the associated restoration into the almost original shape. As such, the QR code could again precisely be read out. We anticipate that tagging products with these information carriers is helpful for the purpose of secure one-time identification.

Graphical abstract: Switchable information carriers based on shape memory polymer

Supplementary files

Article information

Article type
Paper
Submitted
28 Nov 2011
Accepted
25 Jan 2012
First published
10 Feb 2012

J. Mater. Chem., 2012,22, 7757-7766

Switchable information carriers based on shape memory polymer

T. Pretsch, M. Ecker, M. Schildhauer and M. Maskos, J. Mater. Chem., 2012, 22, 7757 DOI: 10.1039/C2JM16204K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements