Issue 14, 2012

Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites

Abstract

The incorporation of graphene sheets (GSs) into polymer matrices affords engineers an opportunity to synthesize polymer composites with excellent physical performances. However, the development of high performance GS-based composites is difficult because of the easy aggregation of GSs in a polymer matrix as well as the weak interfacial adhesion between GSs and the host polymer. Herein, we present a simple and effective route to hyperbranched aromatic polyamide functionalized graphene sheets (GS–HBA). The resulting GS-HBA exhibits uniform dispersion in a thermoplastic polyurethane (TPU) matrix and strong adhesion with the matrix by hydrogen-bond coupling, which improve the load transfer efficiency from the matrix to the GSs. Thus, the GS–HBA–TPU composites possess excellent mechanical performance and high dielectric performance. It has been demonstrated that the GS–HBA composite has higher modulus, higher tensile strength and higher yield strength, and remains at nearly the same strain at break when compared with the composites with graphene oxide, ethylene diamine-modified graphene, and hydrazine reduced graphene. In addition, the hyperbranched polymer chains allow construction of a large number of microcapacitors and suppress the leakage current by isolating the GSs in a TPU matrix, resulting in a higher permittivity and lower loss tangent for the GS–HBA composite in comparison with ethylene diamine-modified graphene, or hydrazine reduced-graphene composites.

Graphical abstract: Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites

Supplementary files

Article information

Article type
Paper
Submitted
29 Dec 2011
Accepted
15 Feb 2012
First published
02 Mar 2012

J. Mater. Chem., 2012,22, 7010-7019

Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites

C. Wu, X. Huang, G. Wang, X. Wu, K. Yang, S. Li and P. Jiang, J. Mater. Chem., 2012, 22, 7010 DOI: 10.1039/C2JM16901K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements