Issue 21, 2012

Synthesis and self-assembly of tetraphenylethene and biphenyl based AIE-active triazoles

Abstract

Self-assembly of fluorescent functional materials has attracted increasing interest in the fabrication of optoelectronic and biological nanodevices. Tetraphenylethene (TPE) is a typical dye molecule with aggregation-induced-emission (AIE) characteristics. Melding TPE carrying triple-bond functionality with diazide-containing biphenyl through “click” chemistry generates AIE-active luminogens [1,1′-biphenyl]-4,4′-diyl bis(6-(4-(4-(1,2,2-triphenylvinyl)phenyl)-1H-1,2,3-triazol-1-yl) hexanoate) [1(5)] and [1,1′-biphenyl]-4,4′-diyl bis(11-(4-(4-(1,2,2-triphenylvinyl)phenyl)-1H-1,2,3-triazol-1-yl) undecanoate) [1(10)] with solid state efficiencies up to unity. Slow addition of dilute THF solutions of 1(m) (m = 5, 10) into nonsolvents such as n-hexane and water yields self-assembled white wooly solids. TEM and SEM observations reveal the (helical) nanofibrous structure of the aggregates. Upon cooling from their concentrated hot solutions, 1(m) readily precipitate. Meanwhile, they can also form gels at high concentrations. Both precipitates and gels of 1(m) exhibit structures similar to those of the aggregates formed in nonsolvents. These results indicate that 1(m) can facilely self-assemble into high emission efficiency (helical) nanofibers, thus paving the way for their optoelectronic and biological applications.

Graphical abstract: Synthesis and self-assembly of tetraphenylethene and biphenyl based AIE-active triazoles

Supplementary files

Article information

Article type
Paper
Submitted
01 Feb 2012
Accepted
13 Mar 2012
First published
15 Mar 2012

J. Mater. Chem., 2012,22, 10472-10479

Synthesis and self-assembly of tetraphenylethene and biphenyl based AIE-active triazoles

W. Z. Yuan, F. Mahtab, Y. Gong, Z. Yu, P. Lu, Y. Tang, J. W. Y. Lam, C. Zhu and B. Z. Tang, J. Mater. Chem., 2012, 22, 10472 DOI: 10.1039/C2JM30620D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements