Issue 21, 2012

Donor–acceptor dyes incorporating a stable dibenzosilole π-conjugated spacer for dye-sensitized solar cells

Abstract

Four novel organic dyes including three based on dibenzosilole (YS01–03) and one based on fluorene (YS04) were synthesized, and their photophysical properties and dye-sensitized solar cell (DSC) performances were characterized. The silicon-containing dibenzosilole-based dyes (YS01–03) were superior to the carbon analogue fluorene-based dye YS04 in incident-photon-to-current conversion efficiency (IPCE), and total solar-to-electric conversion efficiency (η), with YS03, which has the bulkiest and most branched electron donor group, achieving the highest η of 5.07% compared to 2.88% of YS04. To better understand how silicon influences the excited state oxidation potentials (S+/*) and absorption maxima (λmax), the equilibrium molecular geometries of dyes YS01–04 were calculated using density functional theory (DFT) utilizing B3LYP energy functional and DGDZVP basis set. It was shown that the torsion angles (θ1 and θ2) across the biphenyl linkages of dyes containing silicon (YS01–03) were less twisted than that of the silicon-free dye (YS04), which enhanced the π–π* overlap, and that translated into photocurrent enhancements in the silicon-containing dyes YS01–03. Moreover, the vertical electronic excitations and S+/* of dyes YS01–04 were studied using different long-range corrected time-dependent DFT methods, including CAM-B3LYP, LC-BLYP, WB97XD, and LC-wPBE at the basis set level DGDZVP. Excellent agreement between the calculated, using CAM-B3LYP/DGDZVP, and experimental results was found.

Graphical abstract: Donor–acceptor dyes incorporating a stable dibenzosilole π-conjugated spacer for dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
16 Feb 2012
Accepted
26 Mar 2012
First published
26 Mar 2012

J. Mater. Chem., 2012,22, 10771-10778

Donor–acceptor dyes incorporating a stable dibenzosilole π-conjugated spacer for dye-sensitized solar cells

Md. Akhtaruzzaman, Y. Seya, N. Asao, A. Islam, E. Kwon, A. El-Shafei, L. Han and Y. Yamamoto, J. Mater. Chem., 2012, 22, 10771 DOI: 10.1039/C2JM30978E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements