Issue 21, 2012

Conducting polymer alloys for photo-enhanced electro-catalytic oxygen reduction

Abstract

Electro-catalysis is a core element in many technologies proposed for energy storage and conversion in a post-petroleum energy landscape. This has prompted the development of new electro-catalysts, for example for fuel-cells, water-splitting cells, and metal–air batteries, which are not based on traditional rare metals such as platinum, palladium and iridium. In this context, the possibility to use organic conjugated polymers to replace inorganic catalysts has shown promising progress. We hereby demonstrate that an “alloy” of two conjugated polymers, poly[3,4-ethylenedioxythiophene] and polythiophenes, with different oxidation states can act as a photo-enhanced reduction catalyst for the oxygen reduction reaction and thereby reduce the overpotential for that reaction by more than 600 mV under illumination.

Graphical abstract: Conducting polymer alloys for photo-enhanced electro-catalytic oxygen reduction

Supplementary files

Article information

Article type
Paper
Submitted
17 Feb 2012
Accepted
21 Mar 2012
First published
22 Mar 2012

J. Mater. Chem., 2012,22, 10821-10826

Conducting polymer alloys for photo-enhanced electro-catalytic oxygen reduction

B. Kolodziejczyk, O. Winther-Jensen, D. R. MacFarlane and B. Winther-Jensen, J. Mater. Chem., 2012, 22, 10821 DOI: 10.1039/C2JM30992K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements