Issue 37, 2012

Crosslink density of a biomimetic poly(HEMA)-based hydrogel influences growth and proliferation of attachment dependent RMS 13 cells

Abstract

The mechanical properties of biomaterials have profound consequences on cellular and host responses, however, the underlying mechanisms remain poorly understood. Presented are findings that confirm a clear relationship between the elastic modulus, the bulk-to-bound water ratio and the adaptive attachment of attachment dependent cells. We show that biomimetic hydrogels possessing no specific integrin binding motifs but that are of lower elastic modulus and lower bulk-to-bound water ratio, preferentially support cell attachment. Anchorage-dependent human muscle fibroblasts (RMS 13) were cultured on tetraethylene glycol (TEGDA) cross-linked poly(2-hydroxyethyl methacrylate) [poly(HEMA)]-based biomimetic hydrogels containing phosphorylcholine (PC) (1 mol%) and dimethylamino amino ethyl methacrylate (DMAEMA), a 3° amine (5 mol%), as well as on silicone and agarose controls. Changes in the cross-link density (1 to 12 mol%) of the hydrogel produced a monotonic reduction in the glass transition temperature, Tg (131.8 °C at 1 mol% TEGDA to 110.4 °C at 12 mol% TEGDA), but an exponential increase in the bulk-to-bound water (4.25 at 1 mol% to 27.04 at 12 mol%) that exactly parallels the increase in elastic modulus as measured by nano-indentation AFM (152 ± 62 kPa at 1 mol% TEGDA to 1777 ± 1152 kPa at 12 mol% TEGDA). Enumeration, MTT assay and fluorescence microscopy following 4, 8 and 12 days of culture confirms that short-term cell viability and long term proliferation were favored on low cross-link density, low modulus hydrogels and that cells were preferentially attached to low cross-link density hydrogels. Bound water is central to the adaptive attachment of attachment dependent cells.

Graphical abstract: Crosslink density of a biomimetic poly(HEMA)-based hydrogel influences growth and proliferation of attachment dependent RMS 13 cells

Supplementary files

Article information

Article type
Paper
Submitted
21 Apr 2012
Accepted
26 Jun 2012
First published
27 Jun 2012

J. Mater. Chem., 2012,22, 19529-19539

Crosslink density of a biomimetic poly(HEMA)-based hydrogel influences growth and proliferation of attachment dependent RMS 13 cells

A. Guiseppi-Elie, C. Dong and C. Z. Dinu, J. Mater. Chem., 2012, 22, 19529 DOI: 10.1039/C2JM32516K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements