Issue 35, 2012

Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas

Abstract

Very recently, we have reported preparation of several types of Prussian Blue (PB) particles with varying particle sizes by systematically tuning the synthetic conditions (Angew. Chem., Int. Ed., 2012, 51, 984–988). Here, the obtained PB particles are used for removal of Cs ions from aqueous solutions, which will be useful for remediation of nuclear waste. To evaluate the uptake ability of Cs ions into the PB particles, we utilize quartz crystal microbalance (QCM) for real-time monitoring of uptake behavior of Cs ions into the PB particles. The frequency of the QCM is promptly decreased after injection of Cs ions solution into the QCM cell. Hollow PB nanoparticles of 190 nm in diameter have very high surface area (338 m2 g−1), in comparison with other PB particles, leading to efficient Cs adsorption capability eight times larger than that of the commercial PB particles. The diffusion in terms of dissociation constant (Kd), maximum amount of adsorbed Cs in PB particles (mmax), and the adsorption kinetics (k) of Cs ions into the PB particles are also discussed. Due to the selective uptake for Cs ions based on Kd and k values, the PB particles can be proposed as good candidates in waste management consideration.

Graphical abstract: Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas

Article information

Article type
Paper
Submitted
04 May 2012
Accepted
13 Jul 2012
First published
16 Jul 2012

J. Mater. Chem., 2012,22, 18261-18267

Large Cs adsorption capability of nanostructured Prussian Blue particles with high accessible surface areas

N. L. Torad, M. Hu, M. Imura, M. Naito and Y. Yamauchi, J. Mater. Chem., 2012, 22, 18261 DOI: 10.1039/C2JM32805D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements