Issue 41, 2012

Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

Abstract

We present a novel approach to preparing bismuth acceptor doped barium titanate nanocrystal formulations that can be deposited in conjunction with polymers in order to prepare a thin film nanocomposite dielectric that exhibits desirable capacitor characteristics. Exploring the limits of dielectric function in nanocomposites is an important avenue of materials research, while paying strict attention to the overall device quality, namely permittivity, loss and equivalent series resistance (ESR). Pushing capacitor function to higher frequencies, a desirable goal from an electrical engineering point of view, presents a new set of challenges in terms of minimizing interfacial, space charge and polarization effects within the dielectric. We show the ability to synthesize BaTi0.96Bi0.04O3 or BaTi0.97Bi0.03O3 depending on nominal molar concentrations of bismuth at the onset. The low temperature solvothermal route allows for substitution at the titanium site (strongly supported by Rietveld and Raman analysis). Characterization is performed by XRD with Rietveld refinement, Raman Spectroscopy, SEM and HRTEM. A mechanism is proposed for bismuth acceptor substitution, based on the chemical reaction of the alkoxy-metal precursors involving nucleophilic addition. Dielectric analysis of the nanocrystal thin films is performed by preparing nanocrystal/PVP 2–2 nanocomposites (no annealing) and comparing BaTi0.96Bi0.04O3 and BaTi0.97Bi0.03O3 with undoped BaTiO3. Improvements of up to 25% in capacitance (permittivity) are observed, with lower loss and dramatically improved ESR, all to very high frequency ranges (>10 MHz).

Graphical abstract: Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

Additions and corrections

Article information

Article type
Paper
Submitted
21 Jun 2012
Accepted
31 Aug 2012
First published
31 Aug 2012

J. Mater. Chem., 2012,22, 21862-21870

Comprehensive dielectric performance of bismuth acceptor doped BaTiO3 based nanocrystal thin film capacitors

S. Liu, H. Zhang, L. Sviridov, L. Huang, X. Liu, J. Samson, D. Akins, J. Li and S. O'Brien, J. Mater. Chem., 2012, 22, 21862 DOI: 10.1039/C2JM34044E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements