Issue 37, 2012

Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery

Abstract

A novel drug carrier with dual triggerable release properties based on keratin graft poly(ethylene glycol) (keratin-g-PEG) copolymers is reported. Keratin-g-PEG copolymers with different graft densities are synthesized through thiol–ene click chemistry. Taking advantage of the amphiphilicity and the thiol groups of the graft copolymer, nanoparticles stabilized with PEG chains and keratin as the core, bearing glutathione (GSH) cleavable cross-links, are fabricated in aqueous solutions. The keratin-g-PEG copolymer nanoparticles can serve as excellent carriers for doxorubicin hydrochloride salt (DOX·HCl) with a highest loading capacity of 18.1% (w/w). The release of the loaded DOX is sensitive to the concentration of GSH, especially at a GSH concentration of cellular level. Trypsin can further trigger the release of the loaded DOX in the nanoparticles. In vitro cellular uptake experiments indicate that DOX released from the DOX-loaded keratin-g-PEG nanoparticles can be internalized into the cells efficiently, and the loaded DOX shows a faster release into the nuclei of the cells under higher GSH concentrations. The carriers have promising applications as drug carriers for intracellular drug delivery for cancer therapy.

Graphical abstract: Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery

Supplementary files

Article information

Article type
Paper
Submitted
26 Jun 2012
Accepted
10 Aug 2012
First published
13 Aug 2012

J. Mater. Chem., 2012,22, 19964-19973

Biological stimuli responsive drug carriers based on keratin for triggerable drug delivery

Q. Li, L. Zhu, R. Liu, D. Huang, X. Jin, N. Che, Z. Li, X. Qu, H. Kang and Y. Huang, J. Mater. Chem., 2012, 22, 19964 DOI: 10.1039/C2JM34136K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements