Issue 33, 2012

Bimodally integrated anode functional layer for lower temperature solid oxide fuel cells

Abstract

Here we demonstrated a simple low-cost approach to dramatically increase the power density of solid oxide fuel cells (SOFCs) using an improved anode functional layer (AFL) structure. By infiltrating a very small amount (∼2 wt%) of Ni and Gd0.1Ce0.9O1.95(GDC) precursor solution into a submicron-sized, colloidally deposited AFL, a high power density cost-effective bimodally integrated AFL (BI-AFL) was produced. Microstructural analysis of this BI-AFL revealed that the superimposed ultra-fine features surrounding a submicron Ni–GDC particulate structure remained even after high temperature sintering. Applying this BI-AFL on an anode-supported SOFC yielded a maximum power density (MPD) of ∼1.2 W cm−2 at 600 °C, a ∼3× increase compared to SOFC without an AFL. Electrochemical impedance results showed a striking decrease in both ohmic and non-ohmic electrode area specific resistances (ASR) compared to SOFCs with either no AFL or a conventional AFL. The effect of the BI-AFL structure on improving SOFC performance was even greater at lower temperature. These results indicate that a network structure with bimodal particle size distribution in the AFL dramatically increased triple phase boundary (TPB) length and enhanced the interfacial contact between anode and electrolyte.

Graphical abstract: Bimodally integrated anode functional layer for lower temperature solid oxide fuel cells

Article information

Article type
Paper
Submitted
09 Jul 2012
Accepted
12 Jul 2012
First published
18 Jul 2012

J. Mater. Chem., 2012,22, 17113-17120

Bimodally integrated anode functional layer for lower temperature solid oxide fuel cells

K. Taek Lee, H. S. Yoon, J. S. Ahn and E. D. Wachsman, J. Mater. Chem., 2012, 22, 17113 DOI: 10.1039/C2JM34465C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements