Issue 44, 2012

Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3)

Abstract

In this contribution, new data on the reversible Li+ intercalation in iron substituted sodium manganates are provided. Novel Na2/3Mn1−yFeyO2 (y = 0, 1/3 and 2/3) compounds with a P′3-type structure are prepared from freeze-dried citrate precursors at 500 °C. A new structural element is the development of three-layer oxygen stacking contrary to the well-known P2-type Na2/3MnO2 with a two-layer sequence. The effect of Fe additives on the structure of Na2/3MnO2 was examined by XRD powder diffraction and TEM analysis. The oxidation state and the distribution of transition metal ions in Na2/3Mn1−yFeyO2 were analysed using electron paramagnetic resonance spectroscopy. The lithium intercalation in Na2/3Mn1−yFeyO2 was investigated in two-electrode lithium cells of the type Li|LiPF6 (EC:DMC)|Na2/3Mn1−yFeyO2. The stability of the layered phases during lithium intercalation was studied by ex situ Raman spectroscopy. It was found that the intermediate Na2/3Mn2/3Fe1/3O2 composition is able to intercalate Li+ reversibly in high amounts. Details of the structure and its stability during the Li+ intercalation are discussed.

Graphical abstract: Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3)

Article information

Article type
Paper
Submitted
03 Aug 2012
Accepted
25 Sep 2012
First published
26 Sep 2012

J. Mater. Chem., 2012,22, 23418-23427

Structure and reversible lithium intercalation in a new P′3-phase: Na2/3Mn1−yFeyO2 (y = 0, 1/3, 2/3)

M. Yoncheva, R. Stoyanova, E. Zhecheva, E. Kuzmanova, M. Sendova-Vassileva, D. Nihtianova, D. Carlier, M. Guignard and C. Delmas, J. Mater. Chem., 2012, 22, 23418 DOI: 10.1039/C2JM35203F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements