Issue 44, 2012

Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique

Abstract

Large-scale silver nanowire (AgNW) mesh films have received increasing attention as new transparent conductive films used in various printed devices. However, there are two crucial issues in implementing AgNWs that need to be addressed: (1) strong adhesion between AgNW film and substrate and (2) high conductivity with short treatment time for low-cost printed technology. Here, a high-intensity pulsed light (HIPL) sintering technique, which provides extreme heating locally in the AgNW film and at the interface between the film and polymer substrate, sinters the AgNW film to produce high conductivity with strong adhesion on the substrate. Importantly, light intensity, exposure time, and AgNW amount can be adjusted simply to form films that meet specific device needs. A flexible AgNW film with sheet resistance of 19 Ω sq−1 and transmittance of 83% at 550 nm is obtained with only one-step on a polyethylene terephthalate substrate with a light intensity of 1.14 J cm−2 under an exposure time of only 50 μs. The film can endure multiple peeling tests, which will play an important role in printed electronics.

Graphical abstract: Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique

Supplementary files

Article information

Article type
Paper
Submitted
16 Aug 2012
Accepted
21 Sep 2012
First published
24 Sep 2012

J. Mater. Chem., 2012,22, 23561-23567

Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique

J. Jiu, M. Nogi, T. Sugahara, T. Tokuno, T. Araki, N. Komoda, K. Suganuma, H. Uchida and K. Shinozaki, J. Mater. Chem., 2012, 22, 23561 DOI: 10.1039/C2JM35545K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements