Issue 3, 2013

Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments

Abstract

We present a lab-on-a-chip device, the Envirostat 2.0, which allows for the first time contactless cultivation of a single bacterial cell by negative dielectrophoresis (nDEP) in a precisely controllable microenvironment. Stable trapping in perfusing growth medium was achieved by a miniaturization of octupole electrode geometries, matching the dimensions of bacteria. Temperature sensitive fluorescent measurements showed that these reductions of microelectrode distances led to reduced Joule heating during cell manipulation. The presented miniaturization is not possible with conventional manufacturing processes. Therefore, we present a novel bonding technology, which permits miniaturization of 3D octupole electrode geometry with biocompatible materials. To exclude the influence of other cells and to enable sampling of perfusion medium from the isolated living bacterium under study, computer aided flow simulations were used to develop a microfluidic nDEP isolation procedure. The developed microchannel and microelectrode design integrates for the first time well characterized nDEP cell sorting mechanisms and time-resolved contactless single bacterial cell cultivation in a 1.7 picoliter bioreactor system. The cell type independent trapping is demonstrated with singularized Bacillus subtilis, Escherichia coli, Corynebacterium glutamicum and other industrially relevant microbes. The static and precisely controlled microenvironment resulted in a consistent and significant faster growth compared to maximal growth rates observed on population level. Preventing the influence of surfaces and cell–cell interactions, the Envirostat 2.0 chip permits total microenvironmental control by the experimenter and therefore provides major opportunities for microfluidic based cell analysis of bacteria and small eukaryotes.

Graphical abstract: Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments

Supplementary files

Article information

Article type
Paper
Submitted
21 May 2012
Accepted
23 Oct 2012
First published
24 Oct 2012

Lab Chip, 2013,13, 397-408

Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments

F. S. O. Fritzsch, K. Rosenthal, A. Kampert, S. Howitz, C. Dusny, L. M. Blank and A. Schmid, Lab Chip, 2013, 13, 397 DOI: 10.1039/C2LC41092C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements